The dose-escalating study will enroll up to 12 individuals with metastatic, hormone receptor positive breast cancer with stable or minimally progressive disease, including bone metastasis. GMI-1359 is a dual inhibitor of both E-selectin and CXCR4. The trial is designed to evaluate safety, pharmacokinetics and pharmacodynamic measures of biologic activity, such as increases in circulating tumor cells and mobilization of CD34+ and immune T-cell subsets. GlycoMimetics expects the trial results to be available in late 2020, the conclusions of which the Company will use to inform future development of GMI-1359.
Kelly Marcom, M.D., and Dorothy Sipkins, M.D., Ph.D., both of the Duke Cancer Institute, are the trial’s co-principal investigators. This clinical trial builds on published findings from Dr. Sipkins on the key roles of both E-selectin and CXCR4 in the trafficking of metastatic cancer cells and of their establishment as micro-metastases in bone. Dr. Sipkins’ research suggests that both E-selectin and CXCR4 mediate key mechanisms that promote progression and migration of cancer cells to protective niches in the bone marrow micro-environment, and reveals the potential for an E-selectin and CXCR4 inhibitor like GMI-1359 to molecularly excise disseminated breast cancer cells.1
“The initiation of enrollment is an important milestone in our exploration of GMI-1359 and its potential as a novel approach to treating metastatic cancer,” said GlycoMimetics Senior Vice President of Clinical Development and Chief Medical Officer Helen Thackray, M.D., FAAP. “We’re pleased to have such distinguished researchers at Duke University begin to explore the use of this investigational therapy and look forward to learning more about its potential impact as clinical study advances.”
Source: Company Press Release